Fall is Tree Thinning Time for Forest Landowners

Ponderosa pine stand thinned and pruned
Ponderosa pine stand thinned and pruned to prevent spread of low-intensity ground-level fires into the crowns. Photo: US Forest Service.

Fall is just around the corner and for those who own forested land, if you have not already done so, you may want to consider thinning some trees out. People who own forested property are often hesitant to remove trees for various reasons. Why should you thin? What are the advantages?

Forest health

Many people think of a forest as a stand of trees existing together in harmony. In reality, a forest, particularly a young forest, contains trees competing with one another for their life-sustaining resources: sunlight, water, and nutrients.

There’s even a priority list of sorts within individual trees. It varies depending on the species but, in general, the order in which resources are allocated is, from highest priority to lowest priority:

  1. Maintenance of respiration
  2. Production of fine roots
  3. Reproduction
  4. Height growth
  5. Diameter growth
  6. Insect and disease resistance mechanisms, and
  7. Storage

A dense stand of tall, thin lodgepole pine, is a good example of a stand where there are enough available resources to allocate up to priority number 4, height growth, but not enough resources to allocate much to priority number 5, diameter growth, or beyond. This lack of resources will affect overall forest health, as the trees will not be able to allocate resources to insect and disease resistance mechanisms.

What sort of insect and disease resistance mechanisms do trees have? Let’s use bark beetles as an example, since certain species of bark beetles can cause extensive tree mortality.

In most coniferous species a resin duct system produces oleoresin when the tree is wounded, such as a broken branch. Oleoresin is basically a mixture of essential oil (turpentine) and nonvolatile solids (rosin). Oleoresin is considered the primary defense of conifers against bark beetle attack. Beetles that attempt to attack a conifer that is in good health and capable of producing adequate, pressurized oleoresin are typically immobilized in the resin or killed by drowning in it. The chemical makeup of the oleoresin is important as well, as some of the volatiles released from the oleoresin are toxic to bark beetles.

Dense stands, which tend to grow slowly, are consistently associated with bark beetle infestations. The susceptibility of a stand to bark beetle infestations may be changed by reducing competition between trees; in other words, thinning. In western North America, thinning has long been advocated as a preventative measure to reduce or alleviate the amount of bark beetle caused tree mortality. Thinning improves tree vigor and growth. It also decreases the likelihood of bark beetle attacks on individual trees by allowing the site’s available resources to be concentrated on fewer stems, which means trees will have enough resources to allocate to priority number 6 (insect and disease resistance mechanisms).

Wildfire risk reduction

Successful fire exclusion over the past 60 to 70 years has resulted in greater stand densities and a change in species composition. In that span of time, many forests in dry ecosystems, such as eastern Washington, have transitioned from fire-adapted, open ponderosa pine stands to dense pine and Douglas-fir stands. In moist forests, the change has been from open stands of western white pine and western larch to relatively short, closed stands of grand fir, western hemlock and western redcedar. These changes have led to an increase in the occurrence of crown fires (fire that spreads from treetop to treetop), the most intense type of wildfire, and often the most difficult to contain.

Thin from below
Example of thin from below. Photo A: Before thinning. Photo B: After thinning. Photos: Michelle Ensminger.

 

Ponderosa pine, western white pine and western larch all tend to be tall and self-prune (the natural removal of lower limbs that don’t receive enough sunlight to survive). Western white pine and western larch have lower volume crowns and carry their crowns well above surface fuels compared to true firs, Douglas-fir, western hemlock, and western redcedar. Because of these attributes, western white pine and western larch do not carry crown fires well and tend not to create ladder fuels (fuels in the lower canopy that carry fire up into the crowns of trees). In contrast, stands dominated by true firs, Douglas-fir, western hemlock, and/ or western redcedar do not self-prune well. They tend to carry large branches low in the canopy and have relatively voluminous crowns. Stands dominated by these species usually support crown fires.

Thinning cannot alter all variables that influence fire behavior, but it can influence factors such as species composition, available fuel, fuel arrangement, fuel moisture and surface winds. The objective of thinning in wildfire risk reduction is usually to prevent or slow the spread of crown fire by reducing surface and ladder fuels. Thinning also raises the height of overstory crowns and breaks up the connectedness of crowns, which reduces tree-to-tree spread of crown fires.

Wildlife management

Species associated with fairly open canopies and an open forest floor may benefit from thinning treatments. Thinning a stand of trees increases the amount of sunlight reaching the understory, which stimulates the growth of grasses, wildflowers and native shrubs. Elk, deer, and moose will likely benefit from the increase in forage quantity and quality. Small mammals such as chipmunks and deer mice may increase in number, particularly after thinning in Douglas-fir and ponderosa pine forests. This may be advantageous to species of hawks, owls and eagles that prey on small mammals in open forests and small clearings. Although not often considered as part of the wildlife community, pollinators such as moths and butterflies may also benefit from changes in structural diversity as a result of fuel reduction treatments that increase the amount of light reaching foliage and the forest floor.

Timber production

If you are managing your forested land for future timber production, thinning will be an important part of your management plan. Thinning releases resources to the residual trees allowing them to allocate to their fifth priority, diameter growth, which leads to an increase in tree volume. This increase in diameter growth results in an increase in overall stand value.

Thinning techniques

The tools and methods by which thinning is implemented are quite varied, and can result in significantly different stand structures. The type of thinning you select may depend on your objectives and on individual stand characteristics, such as species composition.

When managing for forest health and fuel reduction, private landowners typically use the “thin from below” method. Thinning from below consists of removing trees from the lower canopy, leaving larger trees to occupy the site. This method mimics mortality caused by competition or surface fires and concentrates available resources on larger, healthier, fire-adapted trees, while removing the stagnant, unhealthy trees.

Thinning is best accomplished in the late summer and early fall if possible. At this time trees will be least susceptible to damage from the thinning operation and the populations of insects that may be attracted to the slash created will be low. Winter also is an acceptable time to thin, but can lead to soil compaction and erosion if done at the wrong time. Thinning in spring and summer is not recommended as it can attract insects such as bark beetles and can affect wildlife, particularly nestlings.

For more information about thinning your property, please visit the Forest Stewardship Program and the Landowner Assistance Center pages on the Washington State Department of Natural Resources website.

By Melissa Fischer, Forest Health Specialist, DNR Northeast Region, Washington State Department of Natural Resources

 

Resources to  learn more:

Fettig, C.J., Klepzig, K.D., Billings, R.F., Munson, A.S., Nebeker, T.E., Negron, J.F., and Nowak, J.T. 2007. The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. Forest Ecology and Management. 238: 24-53.

Graham, R.T., Harvey, A.E., Jain, T.B. and Tonn, J.R. 1999. The effects of thinning and similar stand treatments on fire behavior in western forests. U.S. Forest Service, Pacific Northwest Research Station. PNW-GTR-463.

Pilliod, D.S., Bull, E.L., Hayes, J.L. and Wales, B.C. 2006. Wildlife and invertebrate response to fuel reduction treatments in dry coniferous forests of the western United States: A synthesis. U.S. Forest Service, Rocky Mountain Research Station. RMRS-GTR-173.